
 Department of CSE Page 1 of 28

UNIT III

Web Servers and Servlets

 Web Servers:

Any computer can be turned into a Web server by installing server software and connecting the
machine to the Internet. There are many Web server software applications, including public domain
software and commercial packages.

Install TOMCAT web server and APACHE.

While installation, we assign port number 8080 to APACHE. Make sure that these ports are
available i.e., no other process is using this port.

DESCRIPTION:

Set the JAVA_HOME Variable

You must set the JAVA_HOME environment variable to tell Tomcat where to find Java.

Failing to properly set this variable prevents Tomcat from handling JSP pages. This variable

should list the base JDK installation directory, not the bin subdirectory. On Windows XP,

you could also go to the Start menu, select Control Panel, choose System, click on the

Advanced tab, press the Environment Variables button at the bottom, and enter the

JAVA_HOME variable and value directly as:

Name: JAVA_HOME

Value: C:\jdk

Set the CLASSPATH

Since servlets and JSP are not part of the Java 2 platform, standard edition, you have to

identify the servlet classes to the compiler. The server already knows about the servlet

classes, but the compiler (i.e., javac) you use for development probably doesn't. So, if you

don't set your CLASSPATH, attempts to compile servlets, tag libraries, or other classes that

use the servlet and JSP APIs will fail with error messages about unknown classes.

Name: JAVA_HOME

Value: install_dir/common/lib/servlet-api.jar

Turn on Servlet Reloading

The next step is to tell Tomcat to check the modification dates of the class files of requested

servlets and reload ones that have changed since they were loaded into the server's memory.

This slightly degrades performance in deployment situations, so is turned off by default.

However, if you fail to turn it on for your development server, you'll have to restart the server

every time you recompile a servlet that has already been loaded into the server's memory.

Web servers are computers that deliver (serves up) Web pages. Every Web server has an IP

address and possibly a domain name. For example, if you enter the URL
http://www.mrcet.com/index.html in your browser, this sends a request to the Web server whose
domain name is mrcet.com. The server then fetches the page named index.html and sends it to your
browser.

http://www.webopedia.com/TERM/S/software.html
http://www.webopedia.com/TERM/I/Internet.html
http://www.webopedia.com/TERM/C/computer.html
http://www.webopedia.com/TERM/W/web_page.html
http://www.webopedia.com/TERM/I/IP_address.html
http://www.webopedia.com/TERM/I/IP_address.html
http://www.webopedia.com/TERM/D/domain_name.html
http://www.webopedia.com/TERM/U/URL.html
http://www.mrcet.com/index.html
http://www.webopedia.com/TERM/B/browser.html

 Department of CSE Page 2 of 28

RESULT: Thus TOMCAT web server was installed successfully.

Access the developed static web pages for books web site, using these servers by putting the

web pages developed in week-1 and week-2 in the document root.

 Department of CSE Page 3 of 28

RESULT: These pages are accessed using the TOMCAT web server successfully.

INTRODUCTION TO SERVLETS

Servlets:

• Servlets are server side programs that run on a Web or Application server and act as a

middle layer between a requests coming from a Web browser and databases or

applications on the server.

• Using Servlets, you can collect input from users through web page forms, present records

from a database or another source, and create web pages dynamically.

• Servlets don‘t fork new process for each request, instead a new thread is created.

• Servlets are loaded and ready for each request.

• The same servlet can handle many requests simultaneously.

Web Container: It is web server that supports servlet execution. Individual

Servlets are registered with a container. Tomcat is a popular servlet and JSP

container.

 Department of CSE Page 4 of 28

Servlet Architecture:

Servlets Tasks:

Servlets perform the following major tasks:

Read the explicit data sent by the clients (browsers). This includes an HTML form on a

Web page or it could also come from an applet or a custom HTTP client program.

Read the implicit HTTP request data sent by the clients (browsers). This includes cookies,

media types and compression schemes the browser understands, and so forth.

Process the data and generate the results. This process may require talking to a database,

executing an RMI or CORBA call, invoking a Web service, or computing the response

directly.

Send the explicit data (i.e., the document) to the clients (browsers). This document can be

sent in a variety of formats, including text (HTML or XML), binary (GIF images), Excel,

etc.

Send the implicit HTTP response to the clients (browsers). This includes telling the

browsers or other clients what type of document is being returned (e.g., HTML), setting

cookies and caching parameters, and other such tasks.

Life Cycle of Servlet

Life Cycle

 Department of CSE Page 5 of 28

Steps:

The sequence in which the Web container calls the life cycle methods of a servlet is:

1. The Web container loads the servlet class and creates one or more instances of the
servlet class.

2. The Web container invokes init() method of the servlet instance during initialization of
the servlet. The init() method is invoked only once in the servlet life cycle.

3. The Web container invokes the service() method to allow a servlet to process a client

request.

4. The service() method processes the request and returns the response back to the Web

container.

5. The servlet then waits to receive and process subsequent requests as explained in steps
3 and 4.

6. The Web container calls the destroy() method before removing the servlet instance
from the service. The destroy() method is also invoked only once in a servlet life cycle.

The init() method :

The init method is designed to be called only once. It is called when the servlet is first
created, and not called again for each user request.

The servlet is normally created when a user first invokes a URL corresponding to the
servlet.

When a user invokes a servlet, a single instance of each servlet gets created, with each
user request resulting in a new thread that is handed off to doGet or doPost as appropriate.

The init() method simply creates or loads some data that will be used throughout the life
of the servlet.

publicvoidinit()throwsServletException{
// Initialization code...

}

The service() method :

The service() method is the main method to perform the actual task.

The servlet container (i.e. web server) calls the service() method to handle requests

coming from the client(browsers) and to write the formatted response back to the client.

 Department of CSE Page 6 of 28

Each time the server receives a request for a servlet, the server spawns a new thread and

calls service.

The service() method checks the HTTP request type (GET, POST, PUT, DELETE, etc.)
and calls doGet, doPost, doPut, doDelete, etc. methods as appropriate.

publicvoid service(ServletRequest request,

ServletResponse response)

throwsServletException,IOException{
}

The doGet() Method

The doGet() method processes client request, which is sent by the client, using the HTTP

GET method.

To handle client requests that are received using GET method, we need to override the
doGet() method in the servlet class.

In the doGet() method, we can retrieve the client information of the HttpServletRequest

object. We can use the HttpServletResponse object to send the response back to the client.

publicvoiddoGet(HttpServletRequest request,

HttpServletResponse response)

throwsServletException,IOException{
// Servlet code

}

The doPost() Method:

The doPost() method handles requests in a servlet, which is sent by the client, using the
HTTP POST method.

For example, if a client is entering registration data in an HTML form, the data can be
sent using the POST method.

Unlike the GET method, the POST request sends the data as part of the HTTP request

body. As a result, the data sent does not appear as a part of URL.

To handle requests in a servlet that is sent using the POST method, we need to override
the doPost() method. In the doPost() method, we can process the request and send the

response back to the client.

publicvoiddoPost(HttpServletRequest request,

HttpServletResponse response)

throwsServletException,IOException{
// Servlet code

}

The destroy() method :

The destroy() method is called only once at the end of the life cycle of a servlet.

This method gives your servlet a chance to close database connections, halt background

threads, write cookie lists or hit counts to disk, and perform other such cleanup activities.

After the destroy() method is called, the servlet object is marked for garbage collection.

publicvoid destroy()

{

// Finalization code...

}

 Department of CSE Page 7 of 28

Deploying a Servlet- Steps:

1. Download and install the Java Software Development kit(SDK).

2. Download a server(Tomcat).

3. Configure the server

- After installation Tomcat folder will contain ―Start Tomcat‖ and ―Stop Tomcat‖
shortcuts.

- The JAVA_HOME environment variable should be set so that Tomcat can find JDK

JAVA_HOME = c:\jdk1.5

4. Setup deployment environment

Tomcat Directory Structure

- To set up a new application, add a directory under the we bappsdirectory and create a

subdirectory called WEB-INF.

- WEB-INF needs to contain web.xml (servlet configuration file)

- After WEB-INF dir is created, create a subdirectory classesunder it.Java classes will
go under this directory.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

private String message;

public void init() throws ServletException {

// Do required initialization

message = "Hello KALPA NA";

}

public void doGet(HttpServletRequestrequest,HttpServletResponse response)

throwsServletException, IOException {

// Set response content type

response.setContentType("text/html");

// Actual logic goes here.

PrintWriter out = response.getWriter();

out.println("<h1>" + m essage + "</h1>");

}

public void destroy() {

// do nothing.

}

}

 Department of CSE Page 8 of 28

5. Creating ServletDemoServlet

There are three different ways to create a servlet.

a. By implementing Servlet interface

b. By extending GenericServlet class

c. By extending HttpServlet class

6. Compile Servlet and save the class file in classes folder.

7. Create a Deployment Descriptor

- The deployment descriptor is an xml file, from which Web Container gets the

information about the servlet to be invoked.

- The web container uses the Parser to get the information from the web.xml file.

- Add a servlet entry and a servlet- mapping entry for each servlet for Tomcat to run.
Add entries after <web-app> tag inside web.xml

<web-app>

<servlet>

<servlet-name>Demo</servlet-name>

<servlet-class>DemoServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>Demo</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

</web-app>

8. Start Tomcat server

9. Open browser and type http://localhost/MyApp/DemoServlet

http://localhost/MyApp/DemoServlet

 Department of CSE Page 9 of 28

Servlet API

Servlet API consists of two important packages that encapsulates all the important classes

and interface, namely :

1. javax.servlet

2. javax.servlet.http

1. javax.servlet

Interfaces

1. Servlet – Declares life cycle methods for a servlet.

2. ServletConfig – To get initialization parameters

3. ServletContext- To log events and accessinformation

4. ServletRequest- To read data from a client request

5. ServletResponse – To write data from client response

Classes

1. GenericServlet – Implements Servlet and ServletConfig

2. ServletInputStream – Provides an input stream for reading clientrequests.

3. ServletOutputStream - Provides an output stream forwriting

responses to a client.

4. ServletException – Indicates servlet error occurred.
5. UnavailableException - Indicates servlet is unavailable

Servlet Interface

Servlet interface provides common behaviour to all the servlets.

Servlet interface needs to be implemented for creating any servlet (either directly or

indirectly).

It provides 3 life cycle methods that are used to initialize the servlet, to service the

requests, and to destroy the servlet and 2 non-life cycle methods.

 Department of CSE Page 10 of 28

Method Description

public void init(ServletConfigconfig) initializes the servlet. It is the life cycle

method of servlet and invoked by the web

container only once.

public void

service(ServletRequestrequest,ServletResponse
response)

provides response for the incoming request.

It is invoked at each request by the web
container.

public void destroy() is invoked only once and indicates that

servlet is being destroyed.

public ServletConfiggetServletConfig() returns the object of ServletConfig.

public String getServletInfo() returns information about servlet such as
writer, copyright, version etc.

import java.io.*;

import javax.servlet.*;

public class First implements Servlet{

ServletConfig config=null;

public void init(ServletConfig config){

this.config=config;

System.out.println("servlet is initialized");

}

public void service(ServletRequest req,ServletResponse res)

throws IOException,ServletException{

res.setContentType("text/html");

PrintWriter out=res.getWriter();

out.print("<html><body>");

out.print("hello KALPANA");

out.print("</body></html>");

}

public void destroy(){

System.out.println("servlet is destroyed");

}

public ServletConfig getServletConfig(){

return config;

}

public String getServletInfo(){

return "copyright 2007-1010";

}

}

ServletConfig interface

• When the Web Container initializes a servlet, it creates a ServletConfig object for the
servlet.

• ServletConfig object is used to pass information to a servlet during initialization by getting
configuration information from we b.xml(Deployment Descriptor).

 Department of CSE Page 11 of 28

Methods

• getInitParameter(String name): returns a String value initialized parameter

• getInitParameterNames(): returns the names of the servlet's initialization parameters as an

Enumeration of String objects

• getServletContext(): returns a reference to the ServletContext

• getServletName(): returns the name of the servlet instance

ServletContext Interface

• For every Web application a ServletContext object is created by the web container.

• ServletContext object is used to get configuration information from Deployment

Descriptor(web.xml) which will be available to any servlet.

Methods :

• getAttribute(String name) - returns the container attribute with the given name

• getInitParameter(String name) - returns parameter value for the specified parameter name

• getInitParameterNames() - returns the names of the context's initialization parameters as

an Enumeration of String objects

• setAttribute(String name,Objectobj) - set an object with the given attribute name in the

application scope

• removeAttribute(String name) - removes the attribute with the specified name from the

application context

Servlet RequestInterface

• True job of a Servlet is to handle client request.

• Servlet API provides two important interfaces javax.servlet.ServletRequest to

encapsulate client request.

• Implementation of these interfaces provides important information about client request to

a servlet.

Methods

• getAttribute(String name), removeAttribute(String name), setAttribute(String name,
Object o), getAttributeName() – used to store and retrieve an attribute fromrequest.

• getParameter(String name) - returns value of parameter by name

• getParameterNames() - returns an enumeration of all parameter names

• getParameterValues(String name) - returns an array of String objects containing all of the

values the given request parameter has, or null if the parameter does not exist

Servlet ResponseInterface

• Servlet API provides ServletResponseto assist in sending response to client.

Methods

• getWriter()- returns a PrintWriter object that can send character text to the client.

• setContentType(String type)- sets the content type of the response being sent to the client
before sending the respond.

 Department of CSE Page 12 of 28

GenericServlet class

GenericServlet class implements Servlet, ServletConfig and Serializable interfaces.

It provides the implementation of all the methods of these interfaces except the service

method.

GenericServlet class can handle any type of request so it is protocol- independent.

You may create a generic servlet by inheriting the GenericServlet class and providing the

implementation of the service method.

Methods

public void init(ServletConfigconfig) is used to initialize the servlet.

public abstract void service(ServletRequest request, ServletResponse response)
provides service for the incoming request. It is invoked at each time when user requests
for a servlet.

public void destroy() is invoked only once throughout the life cycle and indicates that
servlet is being destroyed.

publicServletConfiggetServletConfig() returns the object of ServletConfig.

public String getServletInfo() returns information about servlet such as writer, copyright,
version etc.

public void init() it is a convenient method for the servlet programmers, now there is no

need to call super.init(config)

publicServletContextgetServletContext() returns the object of ServletContext.

public String getInitParameter(String name) returns the parameter value for the given
parameter name.

public Enumeration getInitParameterNames() returns all the parameters defined in the

we b.xml file.

public String getServletName() returns the name of the servlet object.

public void log(String msg) writes the given message in the servlet log file.

public void log(String msg,Throwable t) writes the explanatory message in the servlet
log file and a stack trace.

ServletInputStream Class

It provides stream to read binary data such as image etc. from the request object. It is an
abstract class.

The getInputStream() method of ServletRequest interface returns the instance of
ServletInputStream class

intreadLine(byte[] b, int off, intlen) it reads the input stream.

 Department of CSE Page 13 of 28

ServletOutputStream Class

It provides a stream to write binary data into the response. It is an abstract class.

The getOutputStream() method of ServletResponse interface returns the instance of
ServletOutputStream class.

ServletOutputStream class provides print() and println() methods that are overloaded.

ServletException and UnavailableException

ServletException is a general exception that the servlet container will catch and log. The
cause can be anything.

http://docs.oracle.com/javaee/7/api/javax/servlet/ServletException.html
http://www.coderanch.com/forums/f-7/servlets

 Department of CSE Page 14 of 28

The exception contains a root cause exception.

Defines an exception that a servlet or filter throws to indicate that it is permanently or
temporarily unavailable.

When a servlet or filter is permanently unavailable, something is wrong with it, and it

cannot handle requests until some action is taken. For example, a servlet might be

configured incorrectly, or a filter's state may be corrupted.

2. javax.servlet.http

Interfaces

1. HttpServletRequest

2. HttpServletResponse

3. HttpSession

Classes

1. HttpServlet

2.Cookie

HTTPServletRequest and HTTPServletResponse

HTTPServletRequestExtends the ServletRequest interface to provide request information

for HTTP servlets.

The servlet container creates an HttpServletRequest object and passes it as an argument to
the servlet's service methods (doGet, doPost, etc).

It Contains all the client's request information.

The HttpServletRequest breaks a request down into parsed elements, such as request URI,

query arguments and headers. Various get methods allow you to access different parts of

the request.

1. requestURI – URL sent bybrowser

2. Parameters -

The HttpServletRequest provides methods for accessing parameters of a request.

The methods getParameter(), getParameterValues()and getParameterNames() are

offered as ways to access the arguments.

http://docs.oracle.com/javaee/6/api/javax/servlet/ServletRequest.html
https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0803httpservletrequest01.html#s0803requesturi01
https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0803httpservletrequest01.html#s0803parameters01

 Department of CSE Page 15 of 28

3. Attributes –

The request object defines a method called getAttribute(). The servlet interface

provides this as a way to include extra information about the request that is not covered

by any of the other HttpServletRequest methods.

4. ServletInputStream –

The ServletInputStream is an InputStream that allows your servlets to read all of
the request‘s input following the headers.

HTTPServletResponseExtends the ServletResponse interface and can perform thesetasks

1. Set Response Codes –

The response code for a request is a numeric value that represents the status of the

response. For example, 200 represents a successful response, 404 represents a file not

found.

2. Set Headers –

Headers for the response can be set by calling setHeader, specifying the name and value
of the header to be set.

3. Send Redirects –

The sendRedirect method is used to issue a redirect to the browser, causing the browser

to issue a request to the specified URL. The URL passed to sendRedirect must be an

absolute URL—it must include protocol, machine, full path, and so on.

4. Set ServletOutputStream –

The ServletOutputStream is obtained by calling getOutputStream on the

HttpServletResponse. It is a subclass of OutputStream that contains a number of

convenient print and println methods.Data written to the ServletOutputStream goes

straight back to the browser.

HTTPSession

HttpSession object is used to store entire session with a specific client.

We can store, retrieve and remove attribute from HttpSession object.

Any servlet can have access to HttpSession object throughout the getSession() method

of the HttpServletRequest object.

HTTPServlet

HttpServlet is extends from GenericServlet and does not override init, destroy and other

methods.

It implements the service () method which is abstract method in GenericServlet.

A subclass of HttpServlet must override at least one method, usually one of these:

o doGet(), if the servlet supports HTTP GET requests

o doPost(), for HTTP POST requests

o doPut(), for HTTP PUT requests

o doDelete(), for HTTP DELETE requests

o Init() and destroy(), to manage resources that are held for the life of the servlet

o getServletInfo(), which the servlet uses to provide information about itself

https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0803httpservletrequest01.html#s0803attributes01
https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0803httpservletrequest01.html#s0803servletinputstream01
http://docs.oracle.com/javaee/6/api/javax/servlet/ServletRequest.html
https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0803httpservletresponse01.html#s0803setresponsecodes01
https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0803httpservletresponse01.html#s0803setheaders01
https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0803httpservletresponse01.html#s0803sendredirects01
https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0803httpservletresponse01.html#s0803setservletoutputstream01

 Department of CSE Page 16 of 28

Cookie

A cookie is a small piece of information that is persisted between the multiple client

requests.

javax.servlet.http.Cookie class provides the functionality of using cookies. It provides a
lot of useful methods for cookies.

public void addCookie(Cookie ck):method of HttpServletResponse interface is used to
add cookie in response object.

public Cookie[] getCookies():method of HttpServletRequest interface is used to return all
the cookies from the browser.

Reading Servlet Parameters(or) Handling HTTPRequest and HTTPResponse

The parameters are the way in which a client or user can send information to the Http
Server.

The HTTPServletRequest interface includes methods that allow you to read the names
and values of parameters that are included in a client request.

The HttpServletResponse Interface provides functionality for sending response to client.

The browser uses two methods to pass this information to web server. These methods are

GET Method and POST Method.

GET method:

The GET method sends the encoded user information appended to the page request.

The page and the encoded information are separated by the ? character as follows:

The GET method is the defualt method to pass information from browser to web server.

Never use the GET method if you have password or other sensitive information to pass to

the server.

The GET method has size limtation: only 1024 characters can be in a request string.

This information is passed using QUERY_STRING header and will be accessible through
QUERY_STRING environment variable.

Servlet handles this type of requests using doGet() method.

POST method:

A generally more reliable method of passing information to a backend program is the

POST method.

This message comes to the backend program in the form of the standard input which you

can parse and use for yourprocessing.

Servlet handles this type of requests using doPost() method.

Reading Form Data using Servlet:

Servlets handles form data parsing automatically using the following methods depending on

the situation:

getParameter(): You call request.getParameter() method to get the value of a form

parameter.

http://www.test.com/hello?key1=value1&key2=value2

http://www.test.com/hello?key1=value1&key2=value2

 Department of CSE Page 17 of 28

getParameterValues(): Call this method if the parameter appears more than once and

returns multiple values, for example checkbox.

getParameterNames(): Call this method if you want a complete list of all parameters in

the current request.

 Department of CSE Page 18 of 28

Sending Data to Client:

Obtain a PrintWriter object HTTPServletResponse that can send character text to the client.

PrintWriterpw = response.getWriter();
pw.println(―Hello world‖);

POST method example

Let us consider HelloForm.java

import java.io.*;
import java.util.*;

import javax.servlet.http.*;

public class HelloForm extends HTTPServlet {

public void doPost(HttpServletRequest request,HttpServletResponse response)throws

IOException,ServletException{

PrintWriter pw = response.getWriter();

pw.print("<html><body>");

pw.print("Name: "+request.getParameter("first_name")+
― ―+request.getParameter("last_name"));

pw.print("</body></html>");

pw.close();
}

}

Compile HelloForm.java as follows: $javac HelloForm.java

Compilation would produce HelloForm.class file.

Next you would have to copy this class file in

<Tomcat- installation-directory>/webapps/ROOT/WEB-INF/classes

Create following entries in we b.xml file located in

<Tomcat- installation-directory>/webapps/ROOT/WEB-INF/

<servlet>

<servlet-name>HelloForm</servlet-name>

<servlet-class>HelloForm</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>HelloForm</servlet-name>

<url-pattern>/HelloForm</url-pattern>

</servlet- mapping>

Now create a HTML page Hello.htmland put it in

<Tomcat- installation-directory>/webapps/ROOT directory

html>

<body>
<formaction="HelloForm"method="GET">

First Name: <inputtype="text"name="first_name">

Last Name: <inputtype="text"name="last_name"/></br>

<inputtype="submit"value="Submit"/>

</form>

</body>

</html>

 Department of CSE Page 19 of 28

When you access http://localhost:8080/Hello.html, then output of the aboveform.

First Name:

Last Name:

Start Tomcat Server and open browser.

Now enter firstname and lastname, Click Submit

It will generate result

Reading Initialization Parameters

1. Using Servlet Config:

An object of ServletConfig is created by the web container for each servlet. This object
can be used to get configuration information from web.xmlfile.

If the configuration information is modified from the web.xml file, we don't need to

change the servlet. So it is easier to manage the web application if any specific content is

modified from time to time.
Methods

• getInitParameter(String name): returns a String value initialized parameter

• getInitParameterNames(): returns the names of the servlet's initialization parameters as an
Enumeration of String objects

• getServletContext(): returns a reference to the ServletContext

• getServletName(): returns the name of the servlet instance

Syntax to provide the initialization parameter for a servlet

The init-param sub-element of servlet is used to specify the initialization parameter
for a servlet.

<web-app>

<servlet>

......

<init-param>

<param-name>email</param-name>

<param-value>kalpana@gamil.com</param-value>

</init-param>

......

</servlet>

</web-app>

Retrieve ServletConfig

ServletConfigsc = getServletConfig();

out.println(sc.getInitParameter("email"));

Mrcet

Kalpana

Submit

Name: KalpanaMrcet

mailto:kalpana@gamil.com

 Department of CSE Page 20 of 28

Ex: we b.xml

<web-app>

servlet>

<servlet-name>TestInitParam</servlet-name>

<servlet-class>TestInitParam</servlet-class>

<init-param>

<param-name>email</param-name>

<param-value>kalpana@gmail.com</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>TestInitParam</servlet-name>

<url-pattern>/TestInitParam</url-pattern>

</servlet- mapping>

</web-app>

TestInitParam.java
import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class TestInitParam extends HttpServlet {
protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");

PrintWriter out = response.getWriter();

ServletConfigsc=getServletConfig();

out.print("<html><body>");

out.print(""+sc.getInitParameter("email")+"");

out.print("</body></html>");
out.close();

}
}

It will generate result

2. Using ServletContext

An object of ServletContext is created by the web container at time of deploying the

project.

This object can be used to get configuration information from web.xml file.

There is only one ServletContext object per web application.

If any information is shared to many servlet, it is better to provide it from the web.xml file

using the <context-param> element.

kalpana@gmail.com

mailto:kalpana@gmail.com
mailto:kalpana@gmail.com

 Department of CSE Page 21 of 28

Advantage

Easy to maintain if any information is shared to all the servlet, it is better to make it

available for all the servlet.

We provide this information from the web.xml file, so if the information is changed, we

don't need to modify the servlet. Thus it removes maintenance problem.

Uses

1. The object of ServletContext provides an interface between the container and servlet.

2. The ServletContext object can be used to get configuration information from the web.xml

file.

3. The ServletContext object can be used to set, get or remove attribute from the web.xml

file.

4. The ServletContext object can be used to provide inter-application communication.

Methods:

getAttribute(String name) - returns the container attribute with the given name

getInitParameter(String name) - returns parameter value for the specified parameter name

getInitParameterNames() - returns the names of the context's initialization parameters as

an Enumeration of String objects

setAttribute(String name,Objectobj) - set an object with the given attribute name in the

application scope

removeAttribute(String name) - removes the attribute with the specified name from the

application context

Retrieve ServletContext

ServletContextapp = getServletContext();

OR

ServletContextapp = getServletConfig().getServletContext();

Ex: we b.xml

<web-app>

<context-param>

<param-name>driverName</param-name>

<param-value>sun.jdbc.JdbcOdbcDriver</param-value>

</context-param>

<servlet>

<servlet-name>TestServletContext</servlet- name>

<servlet-class>TestServletContext</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>TestServletContext</servlet- name>

<url-pattern>/TestServletContext</url-pattern>

</servlet- mapping>

</web-app>

 Department of CSE Page 22 of 28

TestServletContext.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class TestServletContext extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");

PrintWriter out = response.getWriter();

ServletContextsc = getServletContext();

out.println(sc.getInitParameter("driverName"));

}

}

It will generate result

Context Init parameters Servlet Init parameter

Available to all servlets and JSPs that are part
of web

Available to only servlet for which the

<init-param> was configured

Context Init parameters are initialized within
the <web-app> not within a

specific <servlet> elements

Initialized within the <servlet> for each
specific servlet.

ServletContext object is used to get Context
Init parameters

ServletConfig object is used to get Servlet
Init parameters

Only one ServletContext object for entire web
app

Each servlet has its own ServletConfig
object

Session Tracking

• Session simply means a particular interval of time.

• Session Tracking is a way to maintain state (data) of an user.

• Http protocol is a stateless, each request is considered as the new request, so we need to

maintain state using session tracking techniques.

• Each time user requests to the server, server treats the request as the new request. So we

need to maintain the state of an user to recognize to particular user.

sun.jdbc.JdbcOdbcDriver

 Department of CSE Page 23 of 28

• We use session tracking to recognize the user It is used to recognize the particular user.

• Session Tracking Techniques

– Cookies

– Hidden Form Field

– URL Rewriting

– HttpSession

Cookies

Cookies are text files stored on the client computer and they are kept for various
information tracking purpose

There are three steps involved in identifying returning users:

o Server script sends a set of cookies to the browser inresponse header.

o Browser stores this information on local machine for future use.
o When next time browser sends any request to web server then it sends those cookies

information to the server in request header and server uses that information to identify the
user.

Cookies are created using Cookie class present in Servlet API.

For adding cookie or getting the value from the cookie, we need some methods provided

by other interfaces. They are:

a. public void addCookie(Cookie ck):method of HttpServletResponse interface is used
to add cookie in response object.

b. public Cookie[] getCookies():method of HttpServletRequest interface is used to return

all the cookies from the browser.

 Department of CSE Page 24 of 28

Disadvantage of Cookies

• It will not work if cookie is disabled from the browser.

• Only textual information can be set in Cookie object.

Methods

public void setMaxAge(int expiry) Sets the maximum age of the cookie in seconds.

public String getName() Returns the name of the cookie. The name cannot
be changed after creation.

public String getValue() Returns the value of the cookie.

public void setName(String name) changes the name of the cookie.

public void setValue(String value) changes the value of the cookie.

Create Cookie

Cookie ck=new Cookie("user","kalpana ");//creating cookie object

response.addCookie(ck);//adding cookie in the response

Delete Cookie

It is mainly used to logout or signout the user.

Cookie ck=new Cookie("user","");//deleting value of cookie

ck.setMaxAge(0);//changing the maximum age to 0 seconds

response.addCookie(ck);//adding cookie in the response

Get Cookies

Cookie ck[]=request.getCookies();

for(int i=0;i<ck.length;i++)

out.print("
"+ck[i].getName()+" "+ck[i].getValue());

//printing name and value of cookie

Sending the Cookie into the HTTP response headers:

We use response.addCookie to add cookies in the HTTP response header as follows:
response.addCookie(cookie);

Ex: List and AddCookie.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ListandAddCookieextends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

Cookie cookie = null;

out.println("<html><body>"+

"<form method='get' action='/mrcet/CookieLab'>"+

"Name:<input type='text' name='user' />
"+

 Department of CSE Page 25 of 28

"Password:<input type='text' name='pass' >
"+

"<input type='submit' value='submit'>"+

"</form>");

String name = request.getParameter("user");
String pass = request.getParameter("pass");

if(!pass.equals("") || !name.equals("")) {

Cookie ck = new Cookie(name,pass);

response.addCookie(ck);

}

Cookie[] cookies = request.getCookies();
if(cookies != null){

out.println("<h2> Found Cookies Name and Value</h2>");
for (inti = 0; i<cookies.length; i++){

cookie = cookies[i];

out.print("Cookie Name : " + cookie.getName() + ", ");
out.print("Cookie Value: " + cookie.getValue()+"
");

}
}

out.println("</body></html>");

}

}

we b.xml

<web-app>

<servlet>

<servlet-name>ListandAddCookie</servlet-name>

<servlet-class>ListandAddCookie</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>ListandAddCookie</servlet-name>

<url-pattern>/ListandAddCookie</url-pattern>

</servlet- mapping>

</web-app>

Session

• HttpSession Interface provides a way to identify a user across more than one page request

or visit to a Web site and to store information about that user.

• Web container creates a session id for each user. The container uses this id to identify the

particular user.

• The servlet container uses this interface to create a session between an HTTP client and an
HTTP server.

• The session persists for a specified time period, across more than one connection or page
request from the user.

 Department of CSE Page 26 of 28

Get the HttpSession object

The HttpServletRequest interface provides two methods to get the object of HttpSession:

1. publicHttpSessiongetSession():Returns the current session associated with this

request, or if the request does not have a session, creates one.

2. publicHttpSessiongetSession(boolean create):Returns the current HttpSession

associated with this request or, if there is no current session and create is true, returns

a new session.

Destroy Session

session.invalidate();

Set/Get data in session

session.setAttribute(name,value);

session.getAttribute(name);

Methods

1. public String getId():Returns a string containing the unique identifier value.

2. public long getCreationTime():Returns the time when this session was created,

measured in milliseconds since midnight January 1, 1970 GMT.

3. public long getLastAccessedTime():Returns the last time the client sent a request

associated with this session, as the number of milliseconds since midnight January 1,

1970 GMT.

4. public void invalidate():Invalidates this session then unbinds any objects bound to it.

Steps

• On client's first request, the Web Container generates a unique session ID and gives it

back to the client with response. This is a temporary session created by web container.

• The client sends back the session ID with each request. Making it easier for the web

container to identify where the request is coming from.

• The Web Container uses this ID, finds the matching session with the ID and associates

the session with the request.

 Department of CSE Page 27 of 28

Ex: SessionTrack.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class SessionTrack extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException {

// Create a session object if it is already not created.

HttpSession session = request.getSession(true);

String title = "Welcome to my website";

String userID = "";

Integer visitCount = new Integer(0);

if (session.isNew())

{

userID = "Kalpana";

session.setAttribute("UserId", "Kalpana");

}

else {

visitCount = (Integer)session.getAttribute("visitCount");

visitCount = visitCount + 1;

userID = (String)session.getAttribute("UserId");

}

session.setAttribute("visitCount", visitCount);

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>" +

"<body>" +

"<h1>Session Infomation</h1>" +

"<table border='1'>" +

"<tr><th>Session info</th><th>value</th></tr>" +

"<tr><td>id</td><td>" + session.getId() + "</td></tr>" +

"<tr><td>User ID</td<td>" + userID + ―</td></tr>" +

"<tr><td>Number of visits</td><td>" + visitCount + "</td></tr>" +

"</table></body></html>");

}

}

 Department of CSE Page 28 of
28

we b.xml

<web-app>

<servlet>

<servlet-name>SessionTrack</servlet-name>

<servlet-class>SessionTrack</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>SessionTrack</servlet-name>

<url-pattern>/SessionTrack</url-pattern>

</servlet- mapping>

</web-app>

Output:

	Install TOMCAT web server and APACHE.
	DESCRIPTION:
	Set the JAVA_HOME Variable
	Name: JAVA_HOME
	Name: JAVA_HOME (1)

	Servlets:
	Servlet Architecture:
	Servlets perform the following major tasks:

	Life Cycle of Servlet
	The service() method :
	The doGet() Method
	The doPost() Method:
	The destroy() method :
	Tomcat Directory Structure
	<web-app>
	</servlet>
	</servlet-mapping>
	1. javax.servlet
	Interfaces
	Classes
	Methods
	Methods :
	Methods (1)
	Methods (2)
	Interfaces (1)
	Classes (1)
	2. Parameters -
	3. Attributes –
	2. Set Headers –

	Reading Servlet Parameters(or) Handling HTTPRequest and HTTPResponse
	Sending Data to Client:
	POST method example
	Methods
	Syntax to provide the initialization parameter for a servlet
	Retrieve ServletConfig
	Ex: we b.xml

	Advantage
	Uses
	Methods:
	Retrieve ServletContext
	Ex: we b.xml
	Disadvantage of Cookies
	Methods
	Delete Cookie
	Get Cookies
	Sending the Cookie into the HTTP response headers:
	Ex: List and AddCookie.java
	we b.xml
	Get the HttpSession object
	Destroy Session
	Set/Get data in session
	Methods (1)

	Steps
	Ex: SessionTrack.java
	we b.xml
	Output:

